Minimizing Trilateration Errors in the Presence of Uncertain Landmark Positions
نویسندگان
چکیده
Trilateration is a technique for position estimation from range measurements which is often used in robot navigation. Most applications assume that there is no error associated with the landmarks used for trilateration. In cooperative navigation, in which groups of robots use each other as mobile beacons for position estimation, it is imperative to take the uncertainty in the beacon position into account. In this paper, we model the position uncertainty of a landmark using a multivariate Gaussian distribution and show how the uncertain landmark position translates to an uncertainty in the trilaterated position. We provide insights into how the optimal trilateration point for a fixed geometry of landmarks depends on the distribution of the position error. This provides a metric for guiding the motion of a robot to maintain favorable trilateration geometries when navigating relative to other robots whose positions are imprecisely known.
منابع مشابه
Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows
Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...
متن کاملGlobal Journal of Researches in Engineering
In this paper, absolute positioning instrument using trilateration ultrasonic sensor is mainly proposed to estimate absolute position errors combined with estimated position and orientation from differential odometry integrated with gyroscope to calculate absolute position of mobile robot. In the method, the indirect Kalman filter is mainly used to estimate absolute position errors and the esti...
متن کاملMDS and Trilateration Based Localization in Wireless Sensor Network
Localization of sensor nodes is crucial in Wireless Sensor Network because of applications like surveillance, tracking, navigation etc. Various optimization techniques for localization have been proposed in literature by different researchers. In this paper, we propose a two phase hybrid approach for localization using Multidimensional Scaling and trilateration, namely, MDS with refinement usin...
متن کاملDevelopment of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm
Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites. In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...
متن کاملStochastic Unit Commitment in the Presence of Demand Response Program under Uncertainties
In this paper, impacts of various uncertainties such as random outages of generating units and transmission lines, forecasting errors of load demand and wind power, in the presence of Demand response (DR) programs on power generation scheduling are studied. The problem is modelled in the form of a two-stage stochastic unit commitment (UC) which by solving it, the optimal solutions of UC as well...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007